Power station closures

- what next for workers and the environment?

NSW power stations are both big employers and big polluters.

The closures dates are in the calendar, 2023, 2025, 2029, 2033...

Hear from speakers and join the discussion

Lake Macquarie

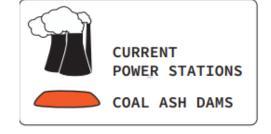
Doyalson RSL Thursday September 8th, 6-8pm

Hunter

East Maitland Bowling Club Thursday September 15th, 6-8pm

Register online at: hcec.org.au

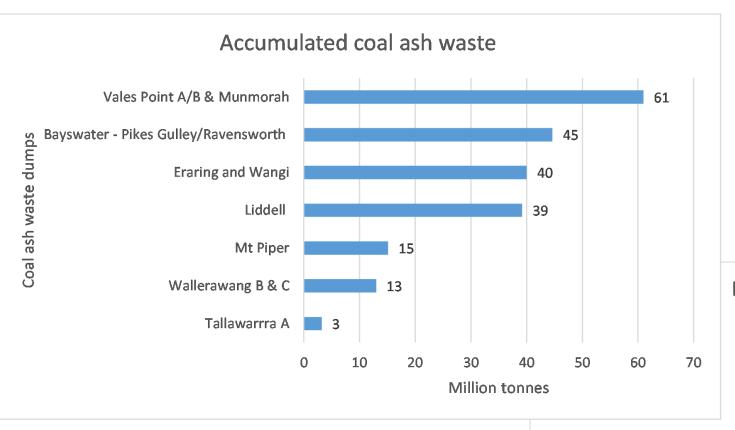
Welcome to Darkinjung Country


Kevin Duncan Senior Education & Tourism Officer Darkinjung Local Aboriginal Land Council

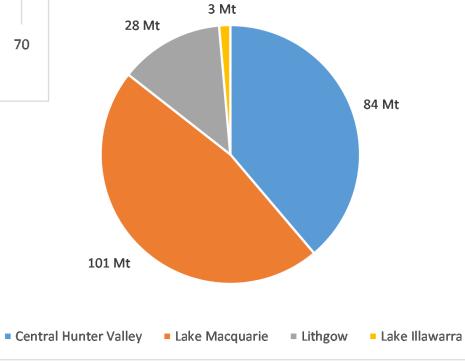
Lake Macquarie coal-ash impacts Hunter Community Environment Centre

September 2022

Presented by Paul Winn, HCEC Senior researcher



'n



COAL ASH AT LITHGOW: 28 MILLION **TONNES**

> 3 MILLION **TONNES**

Vales Point Environmental Site Assessment

- Acid Sulfate Soil conditions.
- Long term ash disposal, a known sources of metal contaminants, within the Ash Dam, may have contributed to metal impacts in the underlying groundwater.
- The ash dam appears to be a primary source of arsenic and selenium to groundwater and a secondary source of cobalt, copper, lead, manganese, nickel and zinc.

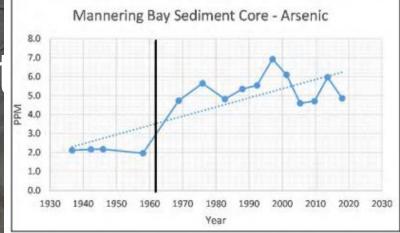
Vales Point Environmental Site Assessment

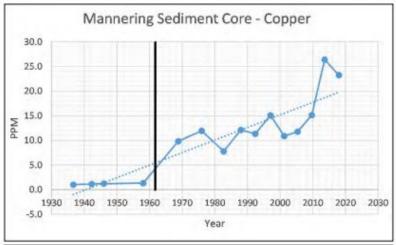
Maximum concentrations down-gradient of ash dam;

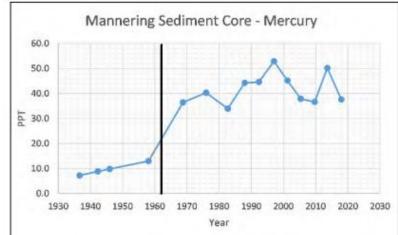
- Arsenic -184 ppm
- Cobalt -169 ppm
- Copper 596 ppm
- Lead 231 ppm

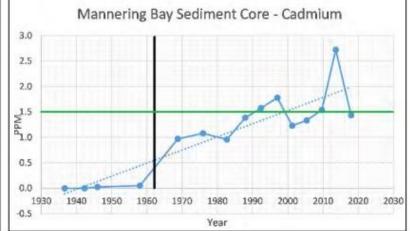
- Manganese 17,300 ppm
- Nickel 133 ppm
- Selenium 276 ppm
- Zinc 1,200 ppm.

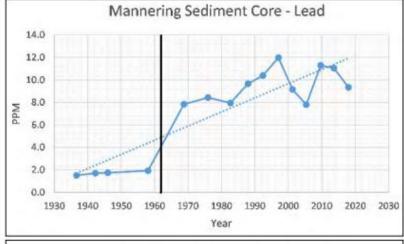
HCEC sediment and water testing: Vales


HCEC water testing: Vales Point


-												
Sample location						ANZECC (2000)						
Sample le	Sample location					Marine trigger value						
Sample location				dam seepage						ANZECC	NHMRC	
Sampl	Sample ID				3wd					(2000) Recreational	Drinking Water	
Field F	rep			TOTAL	DISOLVED	99%	95%	90%	80%	Use	Guidelines	
Type of s	sam	ple	109	Water	Water							
Date Sampled				23/5/20	23/5/20							
pH.					4.5		7-8	3.5				
EC		uS/CM		M .			4					
Metal/metaloii	id	Units	PQL	/								
Aluminium	Al	μg/L	10	81000	75000					200		
Arsenic	As	μg/L	1	43	43					50	10	
Boron	Во	μg/L	20	100	100					1,000	4,000	
Barium	Ba	μg/L	1	230	200					1,000		
Cadmium	Cd	μg/L	0.1	0.1	0.2	0.7	0.7	14	36	5	2	
Cobalt	Со	μg/L	1	59	60	0.005	1	14	150			
Chromium	Cr	μg/L	1							50	50	
Copper	Cu	μg/L	1			0.3	1.3	3	8	1,000	2,000	
Iron	Fe	μg/L	10	1700	1700					300		
Lead	Pb	μg/L	1	2	2	2.2	4.4	20	85	50	10	
Manganese	Mn	μg/L	5	8600	8600					100	500	
Molybdenum	Мо	μg/L	1									
Mercury	Hg	μg/L	0.05			0.1	0.4	0.7	1.4	1	1	
Nickel	Ni	μg/L	1	36	36	7	7	200	560	100	20	
Selenium	Se	μg/L	1							10		
Thallium	Th	μg/L	1									
Vanadium	٧	μg/L	1			50	100	160	280			
Zinc	Zn	μg/L	1	130	130	7	15	23	43	5,000		


HCEC sediment testing: Vales Point


Vales Point A 1962 when metals increase in sediment.


Cadmium x 15
Copper x 10
Selenium x 8
Lead and mercury x 4
Arsenic x 2.5



Eraring Environmental Site Assessment

- Selenium in offsite sediments down-gradient of the ash dam represent a potential risk to the environment (ecological exposure and ingestion of fish).
- Duty to report exists for exceedances of arsenic, nickel, selenium, benzolalpyrene and vinyl chloride, cadmium, copper, lead, nickel, selenium, and zinc.
- May be effected by Acid Sulfate Soils.

Eraring Environmental Site Assessment

Maximum concentrations down-gradient of ash dam;

- Arsenic 73 ppm
- Cadmium 2.8
 - ppm
- Copper 100

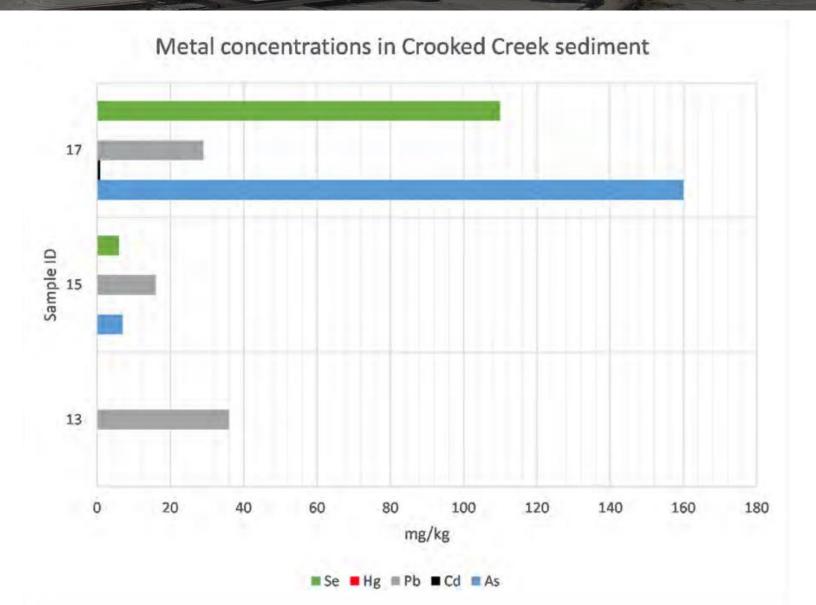
- Nickel 254 ppm
- Selenium 205
 - ppm
- Zinc 1,050 ppm

HCEC water testing: Eraring

HCEC water testing: Eraring

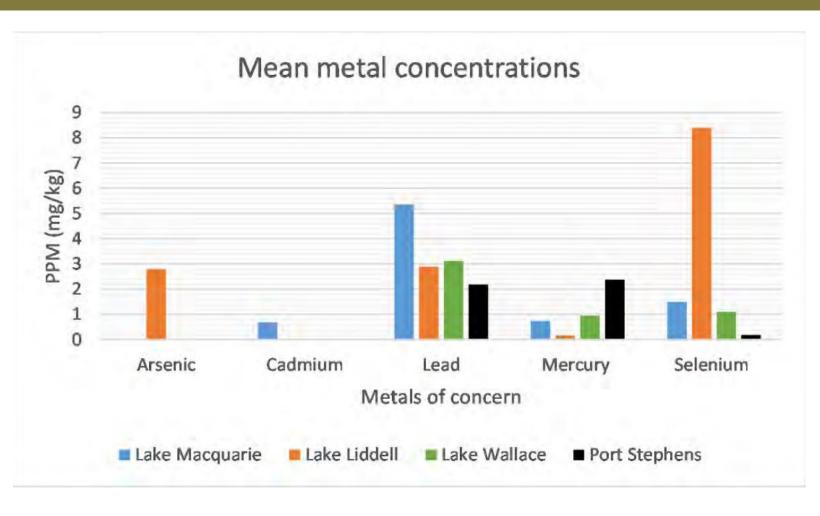
			_						A	NZECC	(2000	0)		
3	Sample I	tion		Eraring ash dam overflow				Marine trigger value						
				Crooked Creek								ANZECC (2000)	NHMRC Drinking	
	Sample ID Field Prep.			1wt	1wd	2wt	2wd					Recreational	Water	
					TOTAL	DISOLVED	TOTAL	DISOLVED	99%	95%	90%	80%	Use	Guidelines
	Type of sample				Water	Water	Water	Water						
	Date Sa	mple	ed		23/5/20	23/5/20	23/5/20	23/5/20						
	pH.					5.9		4.1		7-8	3.5			
	EC		uS/CM				>:	3999						
	Metal/metaloi	id	Units	_										
	Aluminium	Al	μg/L	10	330	290	16000	15000					200	
	Arsenic	As	μg/L	1	2	1	8	4					50	10
	Boron	Во	μg/L	20	1900	1900	1800	1800					1,000	4,000
	Barium	Ba	μg/L	1	190	250	100	100					1,000	
	Cadmium	Cd	μg/L	0.1	0.3	0.3	0.1	0.1	0.7	0.7	14	36	5	2
	Cobalt	Со	μg/L	1	4	4	18	19	0.005	1	14	150		
	Chromium	Cr	μg/L	1			5						50	50
	Copper	Cu	μg/L	1	2		3		0.3	1.3	3	8	1,000	2,000
	Iron	Fe	μg/L	10	11000	11000	43000	6400					300	
	Lead	Pb	μg/L	1			3		2.2	4.4	20	85	50	10
	Manganese	Mn	μg/L	5	1600	1900	5600	5900					100	500
	Molybdenum	Мо	μg/L	1	3	2	4							
	Mercury	Hg	μg/L	0.05					0.1	0.4	0.7	1.4	1	1
	Nickel	Ni	μg/L	1	6	7	21	22	7	7	200	560	100	20
	Selenium	Se	μg/L	1			3						10	
	Thallium	Th	μg/L	1										
	Vanadium	٧	μg/L	1			13		50	100	160	280		
	Zinc	Zn	μg/L	1	46	53	49	45	7	15	23	43	5,000	

HCEC sediment testing: Eraring


Maximum concentrations:

Selenium - 110 ppm

Arsenic - 160 ppm


Lead - 36 ppm

Cadmium - 0.9 ppm

Toxic Habitat: water birds near power stations

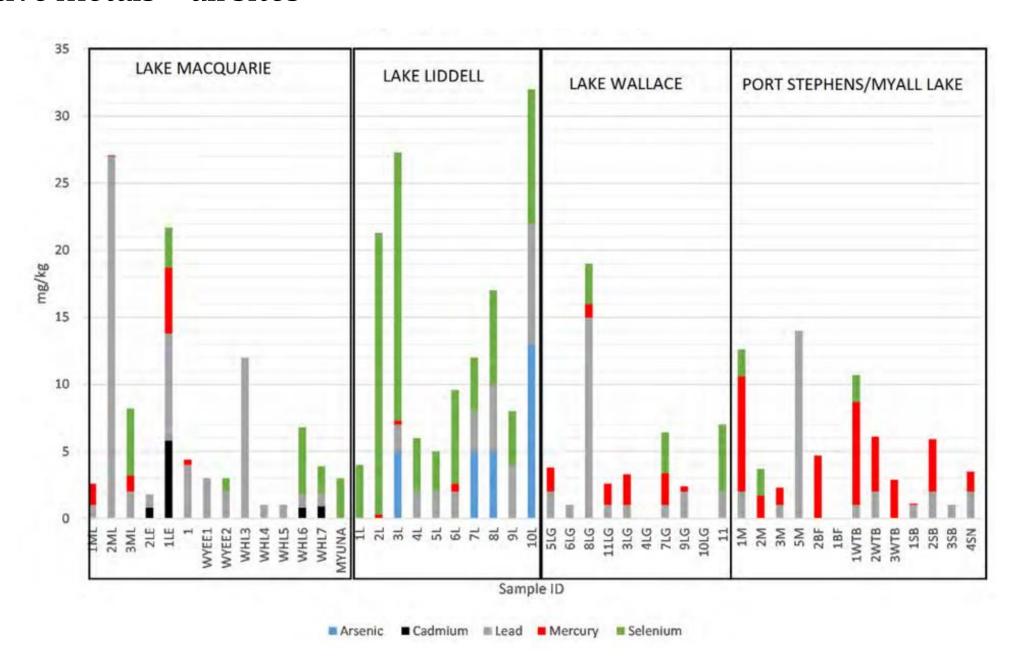
Half of all birds from which we sampled feathers were potentially suffering health impacts from heavy metals emitted by coalfired power stations.

Results: Bird feather study

Lake Macquarie

- Selenium in 6/14
- Lead in all feathers.
- Cadmium only in 4/14 from Lake Macquarie

Lake Wallace


- Lead in all 10
- Mercury in 6/10 -
- Selenium in 7/10 All above adverse health thresholds

Lake Liddell

へつかんつぐん

- Selenium in all feathers. Most exceeding health thresholds.
- Arsenic only in 4/10 from Lake Liddell.
- Highest arsenic, lead, and selenium from an adult Black Swan

Cumulative metals – all sites

Annual metal leaching from NSW ash

Arsenic 1.6t

Cadmium 193kg

Chromium 2t

Copper 3t

Mercury 40kg

Nickel 681kg

Lead 80kg

Selenium 3t

Zinc 5t

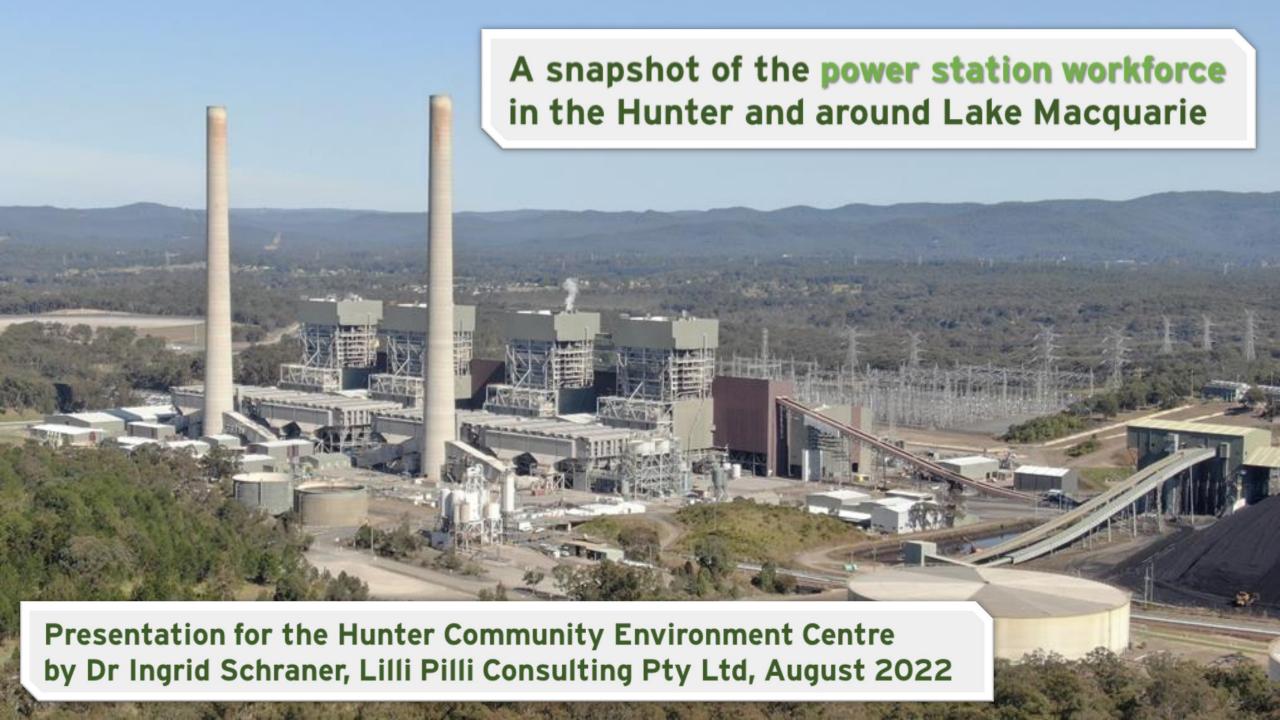
			NSW co	oal-fired	powers	tations	•	Fatimata damanal
Metal (mg/k - ppm)		1	2	3	12	13	Mean ppm	Estimated annual leachate (kg)
Arsenic	As	12	4	6.6	12	43	16	1,634
Boron	В	25	56	89	75	80	65	44,428
Barium	Ва	393	420	653	393	510	474	29,668
Berillium	Ве	22	15	4	9	6	11	1,473
Cadmium	Cd	0.4	0.9	0.25	0.44	0.35	0	193
Cobalt	Со	11	10	6	11	38	15	220
Chromium	Cr	50	40	18	45	72	45	2,017
Copper	Cu	52	50	28	47	151	66	2,940
Gernanium	Ge	40	18	5	10	10	17	2,998
Mercuy	Hg	0.02	0.03	0.15	0.12	0.22	0	39
Lithium	Li	180	28	48	58	106	84	12,540
Manganese	Mn	88	200	899	321	413	384	7,939
Molybdenum	Мо	8	5	5	6	10	7	10,802
Nickel	Ni	41	30	11	24	70	35	681
Lead	Pb	59	60	48	68	48	57	78
Antimony	Sb	2.9	2.3	3.1	3.9	2.9	3	760
Selenium	Se	5.2	4.7	2.5	3.5	3.7	4	3,068
Tin	Sn	10	12	6	10	11	10	13
Vanadium	V	128	120	49	109	172	116	10,896
Tungsten	W	5	7	6	6	3	5	1,805
Zinc	Zn	108	86	67	124	142	105	5,210
Zirconium	Zr	600	440	250	400	450	428	14
			TOTA					420.446

TOTALS 139,416

Critical Minerals in NSW ashes

\$21b Alumina 2.2Mt \$13b Germanium 3,650t \$1.2b 18,500t Lithium \$285m Nickel 7,740t 94,000t \$235m Zircon Cobalt 3,340t \$197m \$180m Copper 14t

			NSW co	al-fired	power	stations		Price per	Resources	
Metal (mg/k - ppm)		1	2	3	12	13	Mean ppm	USD/Ton	(tonnes) in 220Mt fly ash	Resource value AUD
High Purity							20%	6,500	2,200,000	21b
Alumina							_0,0	3,333	_,,	
Arsenic	As	12	4	6.6	12	43	16			-
Boron	В	25	56	89	75	80	65	750	14,300	16m
Barium	Ва	393	420	653	393	510	474		104,236	-
Berillium	Ве	22	15	4	9	6	11	3,500	2,464	13m
Cadmium	Cd	0.4	0.9	0.25	0.44	0.35	0	650	103	98,378
Cobalt	Со	11	10	6	11	38	15	40,000	3,344	197m
Chromium	Cr	50	40	18	45	72	45	9,000	9,900	131m
Copper	Cu	52	50	28	47	151	66	8,500	14,432	180m
Gernanium	Ge	40	18	5	10	10	17	2,370,000	3,652	13b
Mercuy	Hg	0.02	0.03	0.15	0.12	0.22	0		24	-
Lithium	Li	180	28	48	58	106	84	45,000	18,480	1.2b
Manganese	Mn	88	200	899	321	413	384	1,000	84,524	124m
Molybdenun	Мо	8	5	5	6	10	7	26,000	1,496	57m
Nickel	Ni	41	30	11	24	70	35	25,000	7,744	286m
Lead	Pb	59	60	48	68	48	57	2,300	12,452	42m
Antimony	Sb	2.9	2.3	3.1	3.9	2.9	3	12,000	664	12m
Selenium	Se	5.2	4.7	2.5	3.5	3.7	4	650	862	824,023
Tin	Sn	10	12	6	10	11	10	40,000	2,156	127m
Vanadium	V	128	120	49	109	172	116	650	25,432	24m
Tungsten	W	5	7	6	6	3	5	6,000	1,188	11m
Zinc	Zn	108	86	67	124	142	105	3,200	23,188	110m
Zirconium	Zr	600	440	250	400	450	428	1,700	94,160	235m
				AU\$36b						


Thank you

The power station workforce in the Hunter and Lake Macquarie

Dr. Ingrid Schraner *Economist*

Power station workforce

Workforce Liddell & Bayswater: 620

Geographical distribution of coal-fired power stations

BAYSWATER P/S

Workforce Eraring 350

Workforce Vales Point 260

2016 Census Data "Electricity Generation"

Hunter Valley, Lake Macquarie, Central Coast

Where the majority of the "Electricity Generation" workforce lives

2016 Census Data	Central Coast (Vales Point p/s)	Newcastle & Lake Macquarie (Eraring p/s)	Hunter Valley (Bayswater & Liddell p/s)
Lake Macquarie	30%	60%	4%
Central Coast	60%	20%	
Muswellbrook		- Nom!	33%
Singleton	"Electricity Ger	workers	24%
Maitland	= power station & sub-conti	ractors	10%
Cessnock	& Sub-come		10%
Newcastle		10%	4%

* SA4 Statistical Area Level 4 ** POW Point of Work

Workforce age structure in 2016

** POW Point of Work				
2016 Census SA4* (POW)**	Central Coast (Vales Point p/s)	Hunter Valley excl. Newcastle (Bayswater & Liddell p/s)	Newcastle & Lake Macquarie (Eraring p/s)	Total
15 – 49 years	39%	61%	67%	58% or ~700
50 – 64 years	52 %	33%	30%	36% or ~440
Total workforce	260 or 20%	620 or 50%	350 or 30%	1,230 or 100%

Power stations: early retirement funding for less than 440 people

However: local economy needs 1,230 new jobs – not only 700

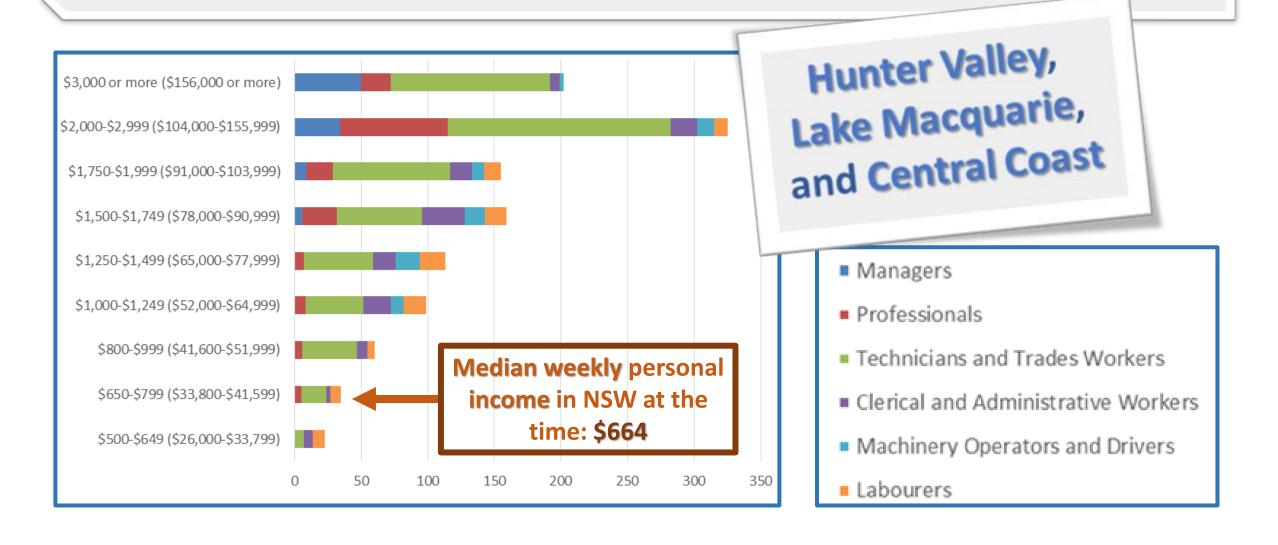
Electricity Generation All Industries

Occupations in Hunter Valley, Lake Macquarie, and Central Coast

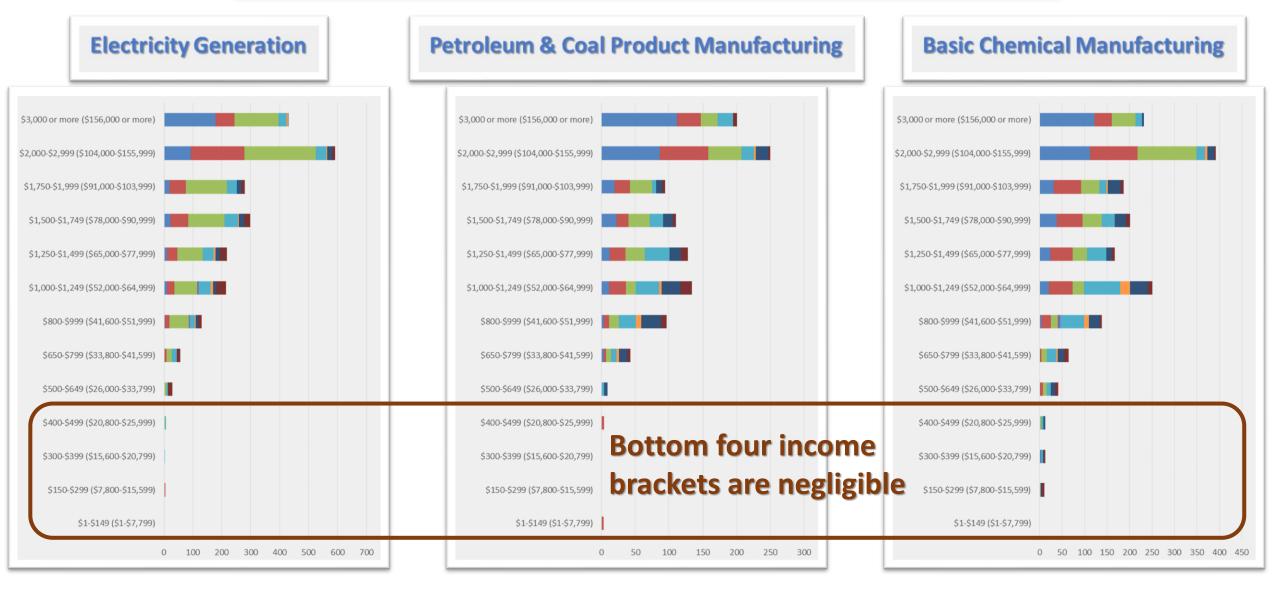
1/2 of the power

station workforce

Managers


Professionals

Technicians and Trades Workers


- Clerical and Administrative Workers
- Machinery Operators and Drivers
- Labourers

3/4 of the power station workforce

Income structure by occupation in Electricity Generation

Income structure by occupation (NSW)

A successful Flagship Project

- 300 jobs for each local economy, all above median income,
- Half the jobs for Tradies, at least half of them in top 3 income brackets (\$91,000/year or more) Sizeable apprenticeship programs for all trades
 - Career paths to top management in all trades
 - Project to be integrated in local economy
 - Low carbon footprint and ongoing social licence

INTERMISSION

Address from Justin Page

Hunter Jobs Alliance, Former NSW State Secretary, Electrical Trades Union (ETU)

Address from Cory Wright

NSW State Secretary, Australian Manufacturing Workers Union (AMWU), Hunter Jobs Alliance

Starting to empty coal-ash dams

Dr Ingrid Schraner Co-Founder Wilco Envirotech

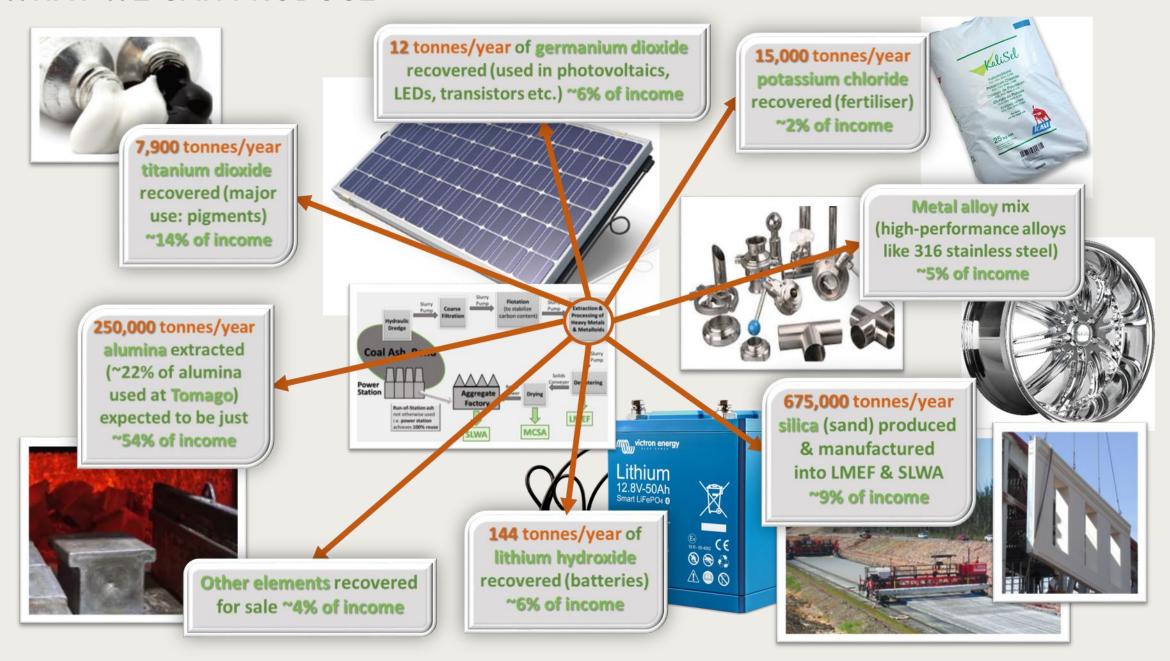
CONCEPT PACK

from the 2022 Accenture Venture Studio a part of WWF Australia's *Innovate 2 Regenerate* Challenge

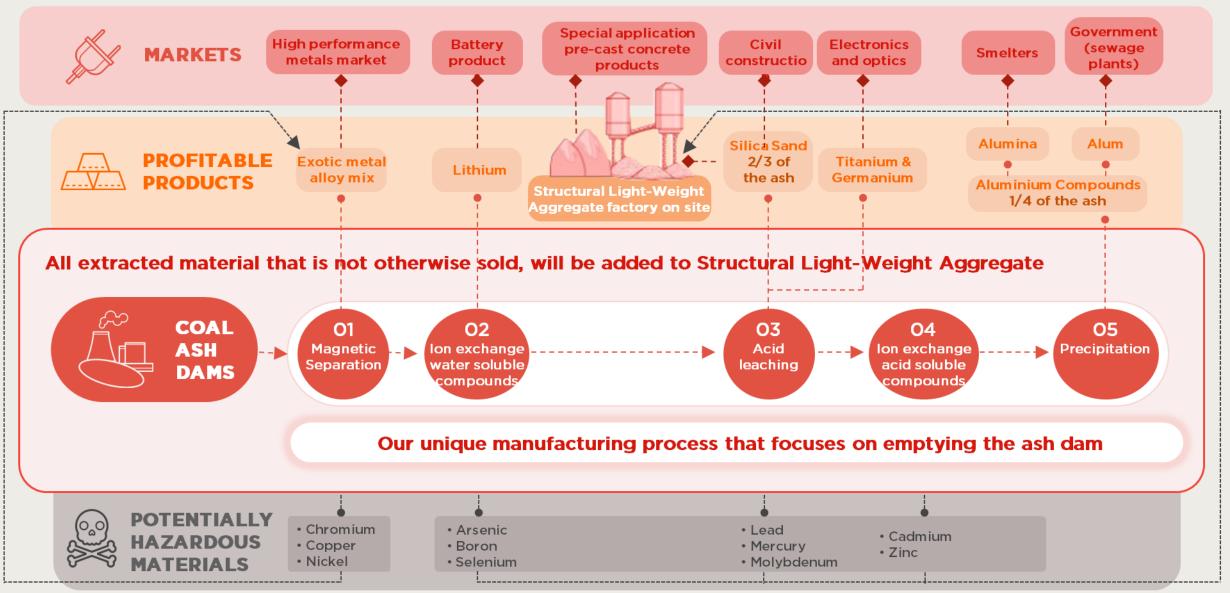
HOW IT WORKS

Our Process

We use a novel combination of established chemical processes and existing equipment from the mining and chemical industries to empty coal-ash dams across Australia and manufacture environmentally safe products.



We work with coal-fired power stations to build advanced chemical manufacturing plants and structural lightweight aggregate factories.


The sale of valuable minerals will fund the processing of potentially hazardous elements into environmentally safe products, serving well-established markets with large growth potential.

WHAT WE CAN PRODUCE

OUR PATENTED PROCESS

How we turn industrial waste into a palette of valuable & safe products, emptying the entire dam.

HOW IT WORKS

Our Impact

A facility that processes one million tonnes of coal-ash and employs some 330 people - in jobs that have comparable occupational and remuneration characteristics to the jobs in coal-fired power stations.

With 5% of the commercial profits we will fund a not-for-profit organisation that will enable local communities to develop, manage and own projects with a focus on First Nations, youth and women-led projects.

OUR REGENERATION PLATFORM

OUR COMPANY AND PROCESS

Our focus on supporting the regeneration of communities and their environments

OUR NOT-FOR-PROFIT ORGANISATION

A replicable model for mainstream businesses to be part of the circularity of wealth with limited risks and fully community controlled projects.

WHERE WE PROVIDE IMPACT

Environment

A novel manufacturing process that empties the whole ash dam and re-uses all components of the ash, setting the highest standards for modern chemical manufacturing.

re.

Powered by Wilco Envirotech

5%

CAPCITY BUILDING

PROJECT SUBMISSION

FUNDING

5% of profits given back to enable communities around us to regenerate themselves and their environments

Communities

Enable First Nations, youth and women groups to identify, develop, manage and own their projects, so that they can regenerate themselves and their environments.

Youth & their organisations

Women & their organisations

First Nations People & their organisations

Keeping a Skilled Workforce

Creating local jobs that make use of the skilled workforce at power stations, invest in apprenticeships and research & development, collaborate with the local university and TAFE colleges - be the place where people want to work.

DISTINGUISHING FEATURES

We give back more than we take – through a model that empowers communities to be in control, without putting undue risks on our business.

We <u>re.source</u> a not-for-profit organisation that enables communities to formulate their priorities, develop their projects, and successfully manage and own them.

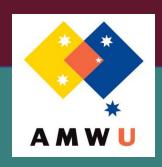
We care about our environment

We developed a novel process to extract all of the potentially hazardous material and all the material that can become a <u>re.source</u> for others – until all the coalash has been safely used up and the local communities can regenerate their environments.

We create good jobs for our communities

Half of a power station's workforce used to be local trades people. We <u>re.source</u> our workforce from here, locally – slightly shifting together from electrical to chemical engineering, but with the same high-quality and high-remuneration jobs.

We are building circular economies


We use power station waste as our key <u>re.source</u>, together with their workforce.


We support modern manufacturing industries, from local lithium battery production to greener aluminium smelting, from solar panel production to specialist precast concrete products.

And we circulate the wealth created, together with our local communities.

Questions & discussion

Thank you

